Correct option is: (1) 2
\(\lim\limits _{x \rightarrow 0}(f(2+x))^{3 / x}=\left(1^{\infty}\right. \text{form })\)
\(e^{\lim _{x \rightarrow 0} \frac{3}{x}(f(2+x)-1)}=e^{\lim _{x \rightarrow} 3 f^{\prime}(2+x)} \)
\(=e^{3 f^{\prime}(2)} \)
\(=e^{12} \)
\(\Rightarrow \alpha=12 \)
\( y=4 x^3-4 x^2-4(12-7) x-12 \)
\( y=4 x^3-4 x^2-20 x-12 \)
\( y=4\left(x^3-x^2-5 x-3\right) \)
\(=4(x+1)^2(x-3)\)
It meets the x-axis at two points