Correct option is: (4) \(\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{2}\right)\)
\( \mathrm{T}_{\mathrm{n}}=\tan ^{-1}\left(\frac{4}{4 \mathrm{n}^{2}+3}\right)\)
\(T_{n}=\tan ^{-1}\left(\frac{\left(n+\frac{1}{2}\right)-\left(n-\frac{1}{2}\right)}{1+\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)}\right)\)
\(\mathrm{T}_{\mathrm{n}}=\tan ^{-1}\left(\mathrm{n}+\frac{1}{2}\right)-\tan ^{-1}\left(\mathrm{n}-\frac{1}{2}\right)\)
\(\mathrm{T}_{1}+\mathrm{T}_{2}+\ldots+\mathrm{T}_{\mathrm{n}}=\tan ^{-1}\left(\mathrm{n}+\frac{1}{2}\right)-\tan ^{-1}\left(\frac{1}{2}\right)\)
\(\mathrm{S}_{\infty}=\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{2}\right)\)