Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
35 views
ago in Mathematics by (44.6k points)

The sum of the infinite series \(\cot ^{-1}\left(\frac{7}{4}\right)+\cot ^{-1}\left(\frac{19}{4}\right)+\cot ^{-1}\left(\frac{39}{4}\right)+\cot ^{-1}\left(\frac{67}{4}\right)+\ldots ..\) is :-

(1) \(\frac{\pi}{2}+\tan ^{-1}\left(\frac{1}{2}\right)\)

(2) \(\frac{\pi}{2}-\cot ^{-1}\left(\frac{1}{2}\right)\)

(3) \(\frac{\pi}{2}+\cot ^{-1}\left(\frac{1}{2}\right)\)

(4) \(\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{2}\right)\)

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.2k points)

Correct option is: (4) \(\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{2}\right)\)  

\( \mathrm{T}_{\mathrm{n}}=\tan ^{-1}\left(\frac{4}{4 \mathrm{n}^{2}+3}\right)\)

\(T_{n}=\tan ^{-1}\left(\frac{\left(n+\frac{1}{2}\right)-\left(n-\frac{1}{2}\right)}{1+\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)}\right)\)

\(\mathrm{T}_{\mathrm{n}}=\tan ^{-1}\left(\mathrm{n}+\frac{1}{2}\right)-\tan ^{-1}\left(\mathrm{n}-\frac{1}{2}\right)\)

\(\mathrm{T}_{1}+\mathrm{T}_{2}+\ldots+\mathrm{T}_{\mathrm{n}}=\tan ^{-1}\left(\mathrm{n}+\frac{1}{2}\right)-\tan ^{-1}\left(\frac{1}{2}\right)\)

\(\mathrm{S}_{\infty}=\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{2}\right)\) 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...