Correct option is (3) \(2 \sqrt{14}\)
\(\overrightarrow {\mathrm{b}}=\overrightarrow{\mathrm{a}} \times(\hat{\mathrm{i}}-3 \hat{\mathrm{k}})\)
\(=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 2 \\ 1 & 0 & -2\end{array}\right|=2 \hat{i}+8 \hat{j}+\hat{k}\)
\(\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}} \times \hat{\mathrm{k}}=8 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}\)
\(\overrightarrow{\mathrm{c}}-2 \hat{\mathrm{j}}=8 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}\)
Projection of \((\hat{\mathrm{i}}-2 \hat{\mathrm{j}})\ \text{on }\overrightarrow{\mathrm{a}}\)
\((\overrightarrow{\mathrm{c}}-2 \hat{\mathrm{j}}) \cdot \hat{\mathrm{a}}=\frac{\langle 8,-4,0\rangle \cdot\langle 3,-1,2\rangle}{\sqrt{14}}\)
\(=\frac{28}{\sqrt{14}}=2 \sqrt{14}\)