An alternating current is given by
\(\mathrm{I}=\mathrm{I}_{\mathrm{A}} \sin \omega \mathrm{t}+\mathrm{I}_{\mathrm{B}} \cos \omega \mathrm{t}\)
The r.m.s. current will be :
(1) \(\sqrt{\mathrm{I}_{\mathrm{A}}^{2}+\mathrm{I}_{\mathrm{B}}^{2}}\)
(2) \(\frac{\sqrt{\mathrm{I}_{\mathrm{A}}^{2}+\mathrm{I}_{\mathrm{B}}^{2}}}{2}\)
(3) \(\sqrt{\frac{\mathrm{I}_{\mathrm{A}}^{2}+\mathrm{I}_{\mathrm{B}}^{2}}{2}}\)
(4) \(\frac{\left|I_{A}+I_{B}\right|}{\sqrt{2}}\)