Correct option is (2) 6
As f(x) is a polynomial of degree two let it be
\(f(x)=a x^{2}+b x+c \quad(a \neq 0)\)
on satisfying given conditions we get
\(\mathrm{C}=1\ \&\ \mathrm{a}= \pm 1\)
hence \(f(x)=1 \pm x^{2}\)
also range \(\in(-\infty, 1]\) hence
\(\mathrm{f}(\mathrm{x})=1-\mathrm{x}^{2}\)
now f(k) = -2k
\(1-\mathrm{k}^{2}=-2 \mathrm{k} \rightarrow \mathrm{k}^{2}-2 \mathrm{k}-1=0\)
let roots of this equation be \(\alpha\ \&\ \beta\)
then \(\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta\)
= 4 - 2(-1) = 6