Correct option is (1) 14
\(7,7^2=49,7^3=343 \equiv(-2)(\bmod 23)\)
\( \Rightarrow 7^{102} \equiv\left(7^3\right)^{34} \equiv(-2)^{34} \equiv 4^{17}(\bmod 23) \)
\( \Rightarrow 4^6 \equiv 2(\bmod 23) \)
\(4^{17} \equiv(2)(2)(12) \equiv 2(\bmod 23) \)
\( 7^{103} \equiv 7.4^{17} \equiv 14(\bmod 23)
\)
Alter : \( 7^{\phi(23)} \equiv 1(\bmod 23), \operatorname{gcd}(7,23)=1\)
\(\phi(23)=(23-1)=22 \)
\(\Rightarrow 7^{22} \equiv 1(\bmod 23) \Rightarrow 7^{11} \equiv(-1) \bmod (23) \)
\({\left[\text { as } 7^{11} \equiv 1 \bmod 23\right] \Rightarrow 7^{99} \equiv-1 \bmod (23)} \)
\( 7^{102} \equiv 2(\bmod 23) \)
\( \Rightarrow 7^{103} \equiv 14 \bmod 23\)