Correct option is : (3) \(\frac{1}{c} \sqrt{\frac{E}{2 m_{p}}}\)
E is missing in the question but considering E as energy, the solution will be
\(\mathrm{E}_{\text {phooon }}=\frac{\mathrm{hc}}{\lambda}=\mathrm{E} ; \ \mathrm{E}_{\text {proton }}=\frac{1}{2} \mathrm{~m}_{\mathrm{p}} \mathrm{v}^{2}=\mathrm{E}\)
\(
\frac{\lambda_{\text {proton }}}{\lambda_{\text {photon }}}=\frac{\mathrm{h} / \mathrm{p}}{\mathrm{hc} / \mathrm{E}}=\frac{\mathrm{h} / \sqrt{2 \mathrm{~m}_{\mathrm{p}} \mathrm{E}}}{\mathrm{hc} / \mathrm{E}}\)
\(=\frac{E}{c \sqrt{2 m_{p} E}}\)
\(\frac{\lambda_{\text {proton }}}{\lambda_{\text {photon }}}=\frac{1}{c} \sqrt{\frac{\mathrm{E}}{2 \mathrm{~m}_{\mathrm{p}}}}\)