Answer is: 6

\(n_{1} \sin \left(90-\theta_{1}\right)=n_{2} \sin \theta_{3}\)
\(\mathrm{n}_{1} \cos \theta_{1}=\mathrm{n}_{2} \sin \theta_{3}\)
\(\mathrm{n}_{1} \frac{\mathrm{n}_{2}}{2 \mathrm{n}_{1}}=\mathrm{n}_{2} \sin \theta_{3}\)
\(\frac{1}{2}=\sin \theta_{3}, \theta_{3}=30\)
\(\tan 30=\frac{\mathrm{d}}{2(\mathrm{t})}\)
\(\mathrm{t}=\frac{\mathrm{d} \sqrt{3}}{2}=\frac{4 \sqrt{3} \times \sqrt{3}}{2} \mathrm{~cm}=6 \mathrm{~cm}\)