Answer is : 2
Electrolysis of NaCl is
\(\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightarrow \mathrm{NaOH}(\mathrm{aq})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{g})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{g})\)
Since during electrolysis pH changes to 12
So \(\left[\mathrm{OH}^{\ominus}\right]=10^{-2}\ \text{and}\ \left[\mathrm{H}^{+}\right]=10^{-12}\)
So by Faraday law
Gram amount of substance deposited = Amount of electricity passed
\(10^{-2} \times \frac{600}{1000} \times 96500=\mathrm{I} \times \mathrm{t}\)
\(\frac{10^{-2} \times 600}{1000} \times 96500=\mathrm{I} \times 5 \times 60\)
\(I=\frac{10^{-2} \times 600 \times 96500}{1000 \times 5 \times 60}\)
\(\mathrm{I}=1.93\ \text{ampere}\)
So, \(I=2\) ampere (nearest integer)