Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
31 views
in Mathematics by (44.4k points)
edited by

\(4 \int_\limits{0}^{1} \frac{1}{\sqrt{3+x^{2}}+\sqrt{1+x^{2}}} d x-3 \ln \sqrt{3}\) is equal to

(1) \(3-\sqrt{2}+\ln (\sqrt{2}+1)\)

(2) \(2+\sqrt{2}-\ln (\sqrt{3}+1)\)

(3) \(2-\sqrt{2}-\ln (\sqrt{2}+1)\)

(4) \(2-\sqrt{3}-\ln (\sqrt{3}+1)\)

Please log in or register to answer this question.

1 Answer

0 votes
by (44.0k points)

Correct option is: (3) \(2-\sqrt{2}-\ln (\sqrt{2}+1)\)    

\(I=4 \int_\limits{0}^{1} \frac{1}{\sqrt{3+x^{2}}+\sqrt{1+x^{2}}} d x\)

\(=2 \int_\limits{0}^{1} \sqrt{3+x^{2}}-\sqrt{1+x^{2}} d x\)

\(=2\left[\int_\limits{0}^{1} \sqrt{3+x^{2}} d x-\int_\limits{0}^{1} \sqrt{1+x^{2}} d x\right]\)

\(=2\left[\left(\frac{1}{2} x \sqrt{x^{2}+3}+\frac{3}{2} \ln \left|\sqrt{3+x^{2}}+x\right|\right)-\right. \left.\left(\frac{1}{2} x \sqrt{1+x^{2}}+\frac{1}{2} \ln \left|\sqrt{1+x^{2}}+x\right|\right)\right]_{0}^{1}\)

\(=2\left[\left(1+\frac{3}{2} \ln 3-\frac{3}{2} \ln \sqrt{3}\right)-\left(\frac{\sqrt{2}}{2}+\frac{1}{2} \ln (\sqrt{2}+1)\right)\right]\)

\(=2\left(1+\frac{3}{4} \ln 3-\frac{1}{\sqrt{2}}-\frac{1}{2} \ln (\sqrt{2}+1)\right)\)

\(=3 \ln \sqrt{3}+2-\sqrt{2}-\ln (\sqrt{2}+1)\)

\(I-3 \ln \sqrt{3}=2-\sqrt{2}-\ln (\sqrt{2}+1) \)  

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...