Correct option is: (3) \(2 \pi^{2}\)

Put tanx = t
\(\sec ^{2} x d x=d t \)
\(I=8 \pi \int_\limits{0}^{\infty} \frac{d t}{4+t^{2}} \)
\(I=8 \pi \frac{1}{2}\left(\tan ^{-1} \frac{t}{2}\right)_{0}^{\infty} \)
\(I=4 \pi\left(\frac{\pi}{2}\right) \)
\(I=2 \pi^{2}\)