Answer is : (5)
Initially
\(pOH = pK_b + log \frac{[NH_4Cl]}{[NH_4OH]} = pK_b + log \frac{0.1}{0.1}\)
pOH = pKb
pH = 14 – pOH = 14 – pKb …(i)
When 0.05 mole HCl is added
\(NH_4OH + H^+ \rightleftharpoons NH _{4}^{+} + H_2O\)
0.1 0.05 0.1
0.1–0.05 0 0.15
= 0.05
\(pOH = pK_b + log \frac{[NH _{4}^{+}]}{[NH_4OH]} = pK_b + log \frac{0.15}{0.5}\)
\(pH = 14 - pK_b - log \frac{0.15}{0.05}\)
\(\text{Change in pH} = 14 - pK_b - log \frac{0.15}{0.05} - 14 + pK_b\)
= –log3 = –0.48
Change in pH = 0.48 or 4.8 × 10–1
\(= x= 4.8 \approx 5\)