
\(\text{Magnifying power} = \frac{\beta}{\alpha} = \frac{\left[\frac{BA}{-u_e}\right]}{\frac{BA}{f_0}} = -\frac{f_0}{u_e}\)
Since the final image is formed at the infinity hence
\(|u_e| = |f_e|\)
\(\Rightarrow \ m = \frac{-f_0}{f_e}\), for the formation of image in the normal adjustment.
(ii) \(m = -\frac{f_0}{f_e} \text{[for normal adjustment]}\)
\(\Rightarrow \text{also}, \ L = f_0 + f_e \Rightarrow 150 = f_0 + f_e \ \ ...(1)\)
and \(\frac{f_0}{f_e} = 2.9 \Rightarrow f_0 = 2.9 f_e \ \ .. (2)\)
putting the value obtained from equation (2) in equation (1)
\(\Rightarrow 2.9f_e + f_e = 150 \Rightarrow f_e = \frac{150}{3.9} = 38.46 \ cm\)
and \(f_0 = 2.9\ f_e \Rightarrow f_0 = 111.538 \ cm\)
\(\Rightarrow \ f_0 = 111.538 \ cm \ \text{and} \ f_e = 38.46 \ cm\)