Correct option is: (1) 15
\(\left(x^{2}+2 x\right)(12-k)=2\)
\(\lambda \mathrm{x}^{2}+2 \lambda \mathrm{x}-2=0\)
\(\mathrm{k} \neq 12\) Let \(12-\mathrm{k}=\lambda\)
\(\mathrm{D}=0\)
\(4 \lambda^{2}+8 \lambda=0\)
\(\lambda=0\) or \(\lambda=-2\)
\(\Rightarrow 12-\mathrm{k}=-2\)
\(\mathrm{k}=14\)
So \(P\left(k, \frac{k}{2}\right)=(14,7)\)
\(d=\left|\frac{3 \times 14+4 \times 7+5}{5}\right|=15\)