Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
22 views
ago in Mathematics by (44.2k points)

Let \(x_{1}, x_{2}, x_{3}, x_{4}\) be in a geometric progression. If 2, 7, 9, 5 are subtracted respectively from \(x_{1}, x_{2}, x_{3}, x_{4}\) then the resulting numbers are in an arithmetic progression. Then the value of \(\frac{1}{24}\left(\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}\right)\) is :

(1) 72

(2) 18

(3) 36

(4) 216 

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.6k points)

Correct option is: (4) 216  

\( x_1=a ; x_2=a r ; x_3=a r^2 ; x_4=a r^3 \)  

\(a-2, a r-7, a r^2-9, a r^3-5 \rightarrow \text { A.P. } \)  

\( a_2-a_1=a_3-a_2 \)  

\( (a r-7)-(a-2)=\left(a r^2-9\right)-(a r-7) \)  

\(=a(r-1)-5=a r(r-1)-2 \)

\( a(r-1)(r-1)=-3 \quad \cdots(i)\) 

\( a_2-a_1=a_4-a_3 \)  

\( (a r-7)-(a-2)=\left(a r^3-5\right)-\left(a r^2-9\right) \) 

\( =a(r-1)-5=a r^2(r-1)+4 \)  

\( =a(r-1)\left(r^2-1\right)=-9 \quad \ldots \text { (ii) }\) 

ii/i

\( \Rightarrow r+1=3 \)

\( \Rightarrow r=2\)

Using (i)

 a(1) (1) = -3  

a = -3 

\(x_1=-3, x_2=-6, x_3=-12, x_4=-24 \)  

\( \frac{1}{24}\left(x_1 \cdot x_2 \cdot x_3 \cdot x_4\right)=216\)  

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...