Correct option is: (4) 194
\( y=\frac{5-x}{x^2-3 x+2} \)
\( x^2 y-3 x y+2 y=5-x \)
\( x^2 y+x(1-3 y)+2 y-5=0\)
For x to be real
D > 0
\((1-3 y)^2-4 y(2 y-5)>0 \)
\( 1+9 y^2-6 y-8 y^2+20 y>0 \)
\( y^2+14 y+1>0 \)
\( y \in(-\infty, \alpha) \cup(\beta, \infty) \)
\( \alpha+\beta=-14 \)
\(\alpha^2+\beta^2=(\alpha+\beta)^2-2 \alpha \beta \)
= 194