Correct option is: (2) 10
\(\lim\limits _{x \rightarrow 0} \frac{f(x)}{x^{2}}=5\)
\(\lim\limits _{x \rightarrow 0} \frac{\left.a x^{4}+b x^{3}+c x^{2}+d x+e\right)}{x^{2}}=5\)
\(\mathrm{c}=5\) and \(\mathrm{d}=\mathrm{e}=0\)
\(f(x)=a x^{4}+b x^{3}+5 x^{2}\)
\(f^{\prime}(x)=4 a x^{3}+3 b x^{2}+10 x\)
\(=x\left(4 a x^{2}+3 b x+10\right)\)
has extremes at 4 and so \(\mathrm{f}^{\prime}(4)=0\ \&\ \mathrm{f}^{\prime}(5)=0\)
so \(\mathrm{a}=\frac{1}{8}\ \&\ \mathrm{~b}=\frac{-3}{2}\)
so \(f(2)=\frac{1}{8} \times 2^{4}-\frac{3}{2} \times 2^{3}+5 \times 2^{2}\)
= 2 - 12 + 20 = 10