Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
16 views
ago in Mathematics by (44.6k points)

If the locus of \(z \in \mathrm{C},\) such that \(\operatorname{Re}\left(\frac{z-1}{2 z+\mathrm{i}}\right)+\operatorname{Re}\left(\frac{\bar{z}-1}{2 \bar{z}-\mathrm{i}}\right)=2,\) is a circle of radius r and center (a, b) then \(\frac{15 a b}{r^{2}}\) is equal to :

(1) 24

(2) 12

(3) 18

(4) 16  

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.2k points)

Correct option is: (3) 18 

\(\operatorname{Re}\left(\frac{z-1}{2 z+i}\right)+\operatorname{Re}\left(\frac{\bar{z}-1}{2 \bar{z}-i}\right)=2\)

Here, \(\frac{\mathrm{z}-1}{2 \mathrm{z}+\mathrm{i}}=\left(\frac{\overline{\bar{z}-1}}{2 \bar{z}-\mathrm{i}}\right)=2\)

\(=\operatorname{Re}\left(\frac{\mathrm{z}-1}{2 \mathrm{z}+\mathrm{i}}\right)+\operatorname{Re}\left(\overline{\frac{\mathrm{z}-1}{2 \mathrm{z}+\mathrm{i}}}\right)=2\)

\(=2 \operatorname{Re}\left(\frac{z-1}{2 z+1}\right)=2 \Rightarrow \operatorname{Re}\left(\frac{z-1}{2 z+i}\right)=1\)

Let z = x + iy

\(\operatorname{Re}\left(\frac{(x-1)+i y}{2 x+i(2 y+1)}\right)=1 \Rightarrow \operatorname{Re}\left[\frac{((x-1)+i y)(2 x-i(y+1)}{(2 x+i(2 y+1)(2 x-i(2 y+1))}\right]=1\)

\(\Rightarrow \frac{2 \mathrm{x}(\mathrm{x}-1)+\mathrm{y}(2 \mathrm{y}+1)}{4 \mathrm{x}^{2}+(2 \mathrm{y}+1)^{2}}=1\)

\(\Rightarrow 2 \mathrm{x}^{2}-2 \mathrm{x}+2 \mathrm{y}^{2}+\mathrm{y}=4 \mathrm{x}^{2}+4 \mathrm{y}^{2}+1+4 \mathrm{y}\)

\(\Rightarrow 2 \mathrm{x}^{2}+2 \mathrm{y}^{2}+3 \mathrm{y}+2 \mathrm{x}+1=0\)

\(\Rightarrow x^{2}+y^{2}+x+\frac{3}{2} y+\frac{1}{2}=0\)

centre \(=\left(\frac{-1}{2}, \frac{-3}{4}\right), \mathrm{r}=\sqrt{\frac{1}{4}+\frac{9}{16}-\frac{1}{2}}=\frac{\sqrt{5}}{4}\)

\(\mathrm{a}=\frac{-1}{2}, \mathrm{~b}=\frac{-3}{4}, \mathrm{r}^{2}=\frac{5}{16}\)

\(15 \frac{\mathrm{ab}}{\mathrm{r}^{2}}=15 \times\left(\frac{-1}{2}\right) \times\left(\frac{-3}{4}\right) \times \frac{16}{5}=18\) 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...