Correct option is: (4) 757
\( a r+a r^3+a r^5=21 \quad \cdots(1)\)
\(a r^7+a r^9+a r^{11}=15309 \quad \cdots(2)\)
\( \frac{E q^n(2)}{E q^n(1)} \Rightarrow \frac{r^7\left(1+r^2+r^4\right)}{r\left(1+r^2+r^4\right)}=\frac{15309}{21} \)
\( r^6=\frac{15309}{21}=729 \)
\( r=3\)
Using (1) \(\quad ar \left(1+r^2+r^4\right)=21\)
\(r=3 \Rightarrow 3 a(1+9+81)=21\)
\(\mathrm{a}=\frac{7}{91}=\frac{1}{13}\)
Sum of first 9 term \(=\frac{\frac{1}{13}\left(3^9-1\right)}{3-1}\)
\(\Rightarrow \frac{1}{26}\left(3^9-1\right)=757\)