Answer is: 98
\(a+b=\lim\limits _{t \rightarrow-1^{+}}(\alpha+\beta)=\lim\limits _{t \rightarrow-1^{+}}-\frac{(t+2)^{\frac{1}{6}}-1}{(t+2)^{\frac{1}{7}}-1}\)
let \(\mathrm{t}+2=\mathrm{y}\)
\(a+b=\lim\limits _{y \rightarrow 1^{+}} \frac{y^{1 / 6}-1}{y^{1 / 7}-1}=\frac{7}{6}\)
\(72(a+b)^{2}=72 \frac{49}{36}=98\)