Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
19 views
ago in Mathematics by (44.6k points)

If \(\int\left(\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{x}^{3}}\right)\left(\sqrt[23]{3 \mathrm{x}^{-24}+\mathrm{x}^{-26}}\right) \mathrm{dx}=-\frac{\alpha}{3(\alpha+1)}\left(3 x^{\beta}+x^{\gamma}\right)^{\frac{\alpha+1}{\alpha}}+C, x>0, (\alpha, \beta, \gamma \in Z),\) where C is the constant of integration, then \(\alpha+\beta+\gamma\) is equal to _____.

Please log in or register to answer this question.

1 Answer

0 votes
ago by (44.2k points)

Answer is: 19 

\(\int\left(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{x}^{4}}\right)\left(\frac{3}{\mathrm{x}}+\frac{1}{\mathrm{x}^{3}}\right)^{\frac{1}{23}} \mathrm{dx}\)

using \(\mathrm{t}=\frac{3}{\mathrm{x}}+\frac{1}{\mathrm{x}^{3}} \Rightarrow \mathrm{dt}=-3\left(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{x}^{4}}\right) \mathrm{dx}\)

\(\int \frac{\mathrm{t}^{1 / 23} \mathrm{dt}}{-3}=\frac{\mathrm{t}^{24 / 23}}{\left(\frac{24}{23}\right)(-3)}+\mathrm{C}\)

\(\Rightarrow \alpha=23 \beta=-1 \gamma=-3\)

\(\alpha+\beta+\gamma=19\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...