Answer is: 19
\(\int\left(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{x}^{4}}\right)\left(\frac{3}{\mathrm{x}}+\frac{1}{\mathrm{x}^{3}}\right)^{\frac{1}{23}} \mathrm{dx}\)
using \(\mathrm{t}=\frac{3}{\mathrm{x}}+\frac{1}{\mathrm{x}^{3}} \Rightarrow \mathrm{dt}=-3\left(\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{x}^{4}}\right) \mathrm{dx}\)
\(\int \frac{\mathrm{t}^{1 / 23} \mathrm{dt}}{-3}=\frac{\mathrm{t}^{24 / 23}}{\left(\frac{24}{23}\right)(-3)}+\mathrm{C}\)
\(\Rightarrow \alpha=23 \beta=-1 \gamma=-3\)
\(\alpha+\beta+\gamma=19\)