For a 100-km length of the line,
R = 0.15 × 100 = 15 Ω ; XL = 314 × 1.2 × 10−3 × 100 = 37.7 Ω
XC = 106/314 × 0.01 × 100 = 3187 Ω
Using the nominal T-method, the equivalent circuit is shown in Fig. 41.33 (a)

VR = 132/√3 = 76.23 kV = 76,230 V. Hence, VR = 76,230 + j 0
Load current, IR = 72 × 102/√3 × 132 × 103 × 0.8 = 394 A
∴ IR = 394 (0.8 − j 0.6) = 315 − j 236 A ; ZBC = (7.5 + j 18.85) W
Drop/phase over BC = IRZBC = (315 − j 236) (7.5 + j 18.85) = 6802 + j 4180
V1 = VR + IRZBC = (76,230 + j0) + ( 6802 + j 4180) = 88,030 + j 4180

IS = IC + IR = (−1.31 + j 26) + (315 − j 236) = (313.7 − j 210) = 377.3 ∠− 33.9°
Drop/phase over AB = ISZA B = (313.7 − j 210) (7.5 + j 18.85) = 6320 + j 4345
∴ VS = V1 + ISZA B = (83,030 + j 4180) + (6320 + j 4345) = 89,350 + j 8525 = 89,750 ∠ 5.4°
Line value of sending-end voltage = √3 × 89,750 × 10−3 = 155.7 kV
Phase difference between VS and IS = 33.9° + 5.4° = 39.3° with current lagging as shown in Fig. 41.33 (b) cos φS = cos 39.3° = 0.774 (lag)