(a) Given equation is \(E_Y = 30 \sin [2\times 10^{11}t + 300\pi x] \text{Vm}^{-1}\)
Comparing the given equation with the equation of
\(E_Y = E_0 \sin \left[\frac{2\pi t}T + \frac{2\pi x}\lambda\right]\),
We get,
\(\frac{2\pi}\lambda = 300\pi \)
⇒ \(\frac 1 \lambda = 150\)
⇒ \(\lambda = \frac 1{150} \) m
⇒ \(\lambda = 6.67 \times 10^{-3}\) m
(b) Oscillating electric field,
\(E_Y = 30 \sin [2\times 10^{11}t + 300\pi x] \text{Vm}^{-1}\)
Here, \(E_0 = 30\)
Hence, \(B_0 = \frac{E_0}c\)
\(= \frac{30}{3 \times 10^ 8}\)
\(= 10^{-7}\)
\(\therefore \) Oscillating magnetic field is given by,
\(B_Z = (10^{-7}) \sin [2\times 10^{11}t + 300\pi x] T\)