We have y = x3 – 3ax2 + 3(a2 – 1) x + 1
⇒ dy/dx = 3x2 – 6ax + 3(a2 – 1)
For max or min, dy/dx = 0
⇒ 3x2 – 6ax + 3(a2 – 1) = 0
⇒ x2 – 2ax + (a2 – 1) = 0
Let g(x) = x2 – 2ax + (a2 – 1)
Clearly, g(– 2) > 0 and g(4) > 0
Now, g(– 2) > 0 gives
⇒ 4 + 4a + a2 – 1 > 0
⇒ a2 + 4a + 3 > 0
⇒ (a + 1)(a + 3) > 0
⇒ a < –3, a > –1 ...(i)
Also, g(4) > 0 gives 16 – 8a + a2 – 1 > 0
⇒ a2 – 8a + 15 > 0
⇒ (a – 3)(a – 5) > 0
⇒ a < 3, a > 5 ...(ii)
Again, –2 < a < 4 ...(iii)
From (i), (ii) and (iii), we get,
–1 < a < 3
⇒ a ∈ (–1, 3)