Correct option (d) a = b = c
Explanation:
Given f(x) = ex2 + e–x2
⇒ f'(x) = 2x(ex2 – e–x2 ) ≤ 0, ∀ x ∈ [0, 1]
Also, g'(x) = ex2 + 2x2 ex2 – 2xe–x2 ≥ 0
for all x in [0, 1]
and h'(x) = 2xex2 + 2x3ex2 – 2xe–x2 ≥ 0
for all x in [0, 1]
Clearly, for 0 ≤ x ≤ 1, f(x) ≥ g(x) ≥ h(x)
Thus, f(1) = g(1) = h(1) = e + 1/e
⇒ a = b = c