Let \(I = \int \frac{\cos x}{\cos 3x} dx\)
\(= \int \frac{\cos x}{(4\cos^3x - 3\cos x)} dx\) \([\cos 3A = 4\cos^3A - 3\cos A]\)
\(= \int \frac 1{4\cos^2x - 3}dx\)
Dividing numerator and denominator by cos2x
⇒ \(I = \int \frac{\sec^2 x}{4 -3\sec^2 x} dx\)
\(= \int \frac{\sec^2x}{4 - 3 (1 + \tan^2 x)}dx\)
\(= \int \frac{\sec^2x}{1 - 3\tan^2 x}dx\)
\(= \int \frac{\sec^2x}{1 - (\sqrt 3 \tan x)^2}dx\)
Let \(\sqrt 3\tan x = t\)
⇒ \(\sqrt 3 \sec^2 x\, dx= dt\)
⇒ \(\sec^2 x \, dx = \frac{dt}{\sqrt 3}\)
\(\therefore I = \frac 1{\sqrt 3} \int \frac{dt}{1^2 - t^2}\)
\(= \frac 1{\sqrt 3} \times \frac 12\, \ln \left|\frac{1 + t}{1 - t}\right| + C\)
\(= \frac 1{2\sqrt 3} \, \ln \left|\frac {1 + \sqrt 3 \tan x}{1 - \sqrt 3\tan x}\right| + C\)