Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
7.5k views
in Trigonometry by (51.0k points)

Prove that:
(i) cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A

(ii) cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A

(iii) sin A + sin 2A + sin 4A + sin 5A = 4 cos A/2 cos 3A/2 sin 3A

1 Answer

+1 vote
by (52.1k points)
selected by
 
Best answer

(i) Given as cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A

Let us consider the LHS

cos 3A + cos 5A + cos 7A + cos 15A

Therefore now,

(cos 5A + cos 3A) + (cos 15A + cos 7A)

On using the formula,

cos A + cos B = 2 cos (A + B)/2 cos (A - B)/2

(cos 5A + cos 3A) + (cos 15A + cos 7A)

= [2 cos (5A + 3A)/2 cos (5A - 3A)/2] + [2 cos (15A + 7A)/2 cos (15A - 7A)/2]

= [2 cos 8A/2 cos 2A/2] + [2 cos 22A/2 cos 8A/2]

= [2 cos 4A cos A] + [2 cos 11A cos 4A]

= 2 cos 4A (cos 11A + cos A)

Again on using the formula,

cos A + cos B = 2 cos (A + B)/2 cos (A - B)/2

2 cos 4A (cos 11A + cos A) = 2 cos 4A [2 cos (11A + A)/2 cos (11A - A)/2]

= 2 cos 4A [2 cos 12A/2 cos 10A/2]

= 2 cos 4A [2 cos 6A cos 5A]

= 4 cos 4A cos 5A cos 6A

= RHS

Thus proved.

(ii) cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A

Let us consider the LHS

cos A + cos 3A + cos 5A + cos 7A

Therefore now,

(cos 3A + cos A) + (cos 7A + cos 5A)

On using the formula,

cos A + cos B = 2 cos (A + B)/2 cos (A - B)/2

(cos 3A + cos A) + (cos 7A + cos 5A)

= [2 cos (3A + A)/2 cos (3A - A)/2] + [2 cos (7A + 5A)/2 cos (7A - 5A)/2]

= [2 cos 4A/2 cos 2A/2] + [2 cos 12A/2 cos 2A/2]

= [2 cos 2A cos A] + [2 cos 6A cos A]

= 2 cos A (cos 6A + cos 2A)

Again on using the formula,

cos A + cos B = 2 cos (A + B)/2 cos (A - B)/2

2 cos A (cos 6A + cos 2A) = 2 cos A [2 cos (6A + 2A)/2 cos (6A - 2A)/2]

= 2 cos A [2 cos 8A/2 cos 4A/2]

= 2 cos A [2 cos 4A cos 2A]

= 4 cos A cos 2A cos 4A

= RHS

Thus proved.

(iii) Given as sin A + sin 2A + sin 4A + sin 5A = 4 cos A/2 cos 3A/2 sin 3A

Let us consider the LHS

sin A + sin 2A + sin 4A + sin 5A

Therefore now,

(sin 2A + sin A) + (sin 5A + sin 4A)

On using the formula,

sin A + sin B = 2 sin (A + B)/2 cos (A - B)/2

(sin 2A + sin A) + (sin 5A + sin 4A)

= [2 sin (2A + A)/2 cos (2A - A)/2] + [2 sin (5A + 4A)/2 cos (5A - 4A)/2]

= [2 sin 3A/2 cos A/2] + [2 sin 9A/2 cos A/2]

= 2 cos A/2 (sin 9A/2 + sin 3A/2)

Again on using the formula,

sin A + sin B = 2 sin (A + B)/2 cos (A - B)/2

2 cos A/2 (sin 9A/2 + sin 3A/2) = 2 cos A/2 [2 sin (9A/2 + 3A/2)/2 cos (9A/2 – 3A/2)/2]

= 2 cos A/2 [2 sin ((9A + 3A)/2)/2 cos ((9A - 3A)/2)/2]

= 2 cos A/2 [2 sin 12A/4 cos 6A/4]

= 2 cos A/2 [2 sin 3A cos 3A/2]

= 4 cos A/2 cos 3A/2 sin 3A

= RHS

Thus proved.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...