Let us consider the LHS
(sin 3x + sin x) sin x + (cos 3x – cos x) cos x
= (sin 3x) (sin x) + sin2 x + (cos 3x) (cos x) – cos2 x
= [(sin 3x) (sin x) + (cos 3x) (cos x)] + (sin2 x – cos2 x)
= [(sin 3x) (sin x) + (cos 3x) (cos x)] – (cos2 x – sin2 x)
= cos (3x – x) – cos 2x
As we know, cos 2x = cos2 x – sin2 x
cos A cos B + sin A sin B = cos(A – B)
Therefore,
= cos 2x – cos 2x
= 0
= RHS
Thus proved.