(i) (1 + i) (1 + 2i)
Now let us simplify and express in the standard form of (a + ib),
(1 + i) (1 + 2i) = (1 + i)(1 + 2i)
= 1(1 + 2i) + i(1 + 2i)
= 1 + 2i + i + 2i2
= 1 + 3i + 2(-1) [since, i2 = -1]
= 1 + 3i - 2
= -1 + 3i
Thus the values of a, b are -1, 3.
(ii) (3 + 2i)/(-2 + i)
Now let us simplify and express in the standard form of (a + ib),
(3 + 2i)/(-2 + i) = [(3 + 2i)/(-2 + i)] × (-2 - i)/(-2 - i) [multiply and divide with (-2 - i)]
= [3(-2 - i) + 2i(-2 - i)]/[(-2)2 – (i)2]
= [-6 - 3i – 4i - 2i2]/(4 - i2)
= [-6 - 7i - 2(-1)]/(4 – (-1)) [since, i2 = -1]
= [-4 - 7i]/5
∴ The values of a, b are -4/5, -7i/5
(iii) 1/(2 + i)2
Now let us simplify and express in the standard form of (a + ib),
1/(2 + i)2 = 1/(22 + i2 + 2(2) (i))
= 1/ (4 – 1 + 4i) [since, i2 = -1]
= 1/(3 + 4i) [By multiply and divide with (3 – 4i)]
= 1/(3 + 4i) × (3 – 4i)/(3 – 4i)]
= (3-4i)/ (32 – (4i)2)
= (3-4i)/ (9 – 16i2)
= (3-4i)/ (9 – 16(-1)) [since, i2 = -1]
= (3-4i)/25
∴ The values of a, b are 3/25, -4i/25
(iv) (1 – i) / (1 + i)
Now let us simplify and express in the standard form of (a + ib),
(1 – i) / (1 + i) = (1 – i) / (1 + i) × (1 - i)/(1 - i) [multiply and divide with (1 - i)]
= (12 + i2 – 2(1)(i)) / (12 – i2)
= (1 + (-1) -2i) / (1 – (-1))
= -2i/2
= -i
∴ The values of a, b are 0, -i
(v) (2 + i)3/(2 + 3i)
Now let us simplify and express in the standard form of (a + ib),
(2 + i)3/(2 + 3i) = (23 + i3 + 3(2)2(i) + 3(i)2(2))/(2 + 3i)
= (8 + (i2.i) + 3(4)(i) + 6i2)/(2 + 3i)
= (8 + (-1)i + 12i + 6(-1))/(2 + 3i)
= (2 + 11i)/(2 + 3i)
[by multiply and divide with (2 - 3i)]
= (2 + 11i)/(2 + 3i) × (2 - 3i)/(2 - 3i)
= [2(2 - 3i) + 11i(2 - 3i)]/(22 – (3i)2)
= (4 – 6i + 22i – 33i2)/(4 – 9i2)
= (4 + 16i – 33(-1))/(4 – 9(-1)) [since, i2 = -1]
= (37 + 16i)/13
Thus the values of a, b are 37/13, 16i/13