(i) [(1 + i) (1 + √3i)]/(1 – i)
Now let us simplify and express in the standard form of (a + ib),
[(1 + i) (1 + √3i)]/(1 – i) = [1(1 + √3i) + i(1 + √3i)]/(1 - i)
= (1 + √3i + i + √3i2)/(1 – i)
= (1 + (√3 + 1)i + √3(-1))/(1 - i) [since, i2 = -1]
= [(1 - √3) + (1 + √3)i]/(1 - i)
[by multiply and divide with (1 + i)]
= [(1 - √3) + (1 + √3)i]/(1 - i) × (1 + i)/(1 + i)
= [(1 - √3) (1 + i) + (1 + √3)i(1 + i)]/(12 – i2)
= [1 - √3 + (1 - √3)i + (1 + √3)i + (1 + √3)i2]/(1 - (-1)) [since, i2 = -1]
= [(1 - √3) + (1 - √3 + 1 + √3)i + (1+ √3)(-1)]/2
= (-2√3 + 2i)/2
= -√3 + i
Thus the values of a, b are -√3, i
(ii) (2 + 3i)/(4 + 5i)
Now let us simplify and express in the standard form of (a + ib),
(2 + 3i)/(4 + 5i) = [multiply and divide with (4 - 5i)]
= (2 + 3i)/(4 + 5i) × (4 - 5i)/(4 - 5i)
= [2(4 - 5i) + 3i(4 - 5i)]/(42 – (5i)2)
= [8 – 10i + 12i – 15i2]/(16 – 25i2)
= [8 + 2i - 15(-1)]/(16 – 25(-1)) [since, i2 = -1]
= (23 + 2i)/41
∴ The values of a, b are 23/41, 2i/41
(iii) (1 – i)3/(1 – i3)
Now let us simplify and express in the standard form of (a + ib),
(1 – i)3/(1 – i3) = [13 – 3(1)2i + 3(1)(i)2 – i3]/(1 - i2.i)
= [1 – 3i + 3(-1)-i2.i]/(1 – (-1)i) [since, i2 = -1]
= [-2 – 3i – (-1)i]/(1 + i)
= [-2 - 4i]/(1 + i)
[By Multiply and divide with (1 - i)]
= [-2 - 4i]/(1 + i) × (1 - i)/(1 - i)
= [-2(1 - i) -4i(1 - i)]/(12 – i2)
= [-2 + 2i - 4i + 4i2]/(1 – (-1))
= [-2 - 2i + 4(-1)]/2
= (-6 - 2i)/2
= -3 – i
∴ The values of a, b are -3, -i
(iv) (1 + 2i)-3
Now let us simplify and express in the standard form of (a + ib),
(1 + 2i)-3 = 1/(1 + 2i)3
= 1/(13 + 3(1)2 (2i) + 2(1)(2i)2 + (2i)3)
= 1/(1 + 6i + 4i2 + 8i3)
= 1/(1 + 6i + 4(-1) + 8i2.i) [since, i2 = -1]
= 1/(-3 + 6i + 8(-1)i) [since, i2 = -1]
= 1/(-3 - 2i)
= -1/(3 + 2i)
[By multiply and divide with (3 - 2i)]
= -1/(3 + 2i) × (3 - 2i)/(3 - 2i)
= (-3 + 2i)/(32 – (2i)2)
= (-3 + 2i)/(9-4i2)
= (-3 + 2i)/(9 - 4(-1))
= (-3 + 2i)/13
∴ The values of a, b are -3/13, 2i/13
(v) (3 – 4i)/[(4 – 2i) (1 + i)]
Now let us simplify and express in the standard form of (a + ib),
(3 – 4i)/[(4 – 2i) (1 + i)] = (3 - 4i)/[4(1 + i) - 2i(1 + i)]
= (3 - 4i)/[4 + 4i - 2i - 2i2]
= (3 - 4i)/[4 + 2i - 2(-1)] [since, i2 = -1]
= (3 - 4i)/(6 + 2i)
[By multiply and divide with (6 - 2i)]
= (3 - 4i)/(6 + 2i) × (6 - 2i)/(6 - 2i)
= [3(6 - 2i) - 4i(6 - 2i)]/(62 – (2i)2)
= [18 – 6i – 24i + 8i2]/(36 – 4i2)
= [18 – 30i + 8 (-1)]/(36 – 4 (-1)) [since, i2 = -1]
= [10 - 30i]/ 40
= (1 – 3i)/4
Thus the values of a, b are 1/4, -3i/4