Given:
⇒ a + ib = \(\frac{(1+i)(1+\sqrt{3}i)}{1-i}\)
⇒ a + ib = \(\frac{1(1+\sqrt{3}i)+i(1+\sqrt{3}i)}{1-i}\)
⇒ a + ib = \(\frac{1+\sqrt{3}i+i+\sqrt{3}i^2}{1-i}\)
We know that i2=-1
⇒ a + ib = \(\frac{1+(\sqrt{3}+1)i+\sqrt{3}(-1)}{1-i}\)
⇒ a + ib = \(\frac{(1-\sqrt{3})+(1+\sqrt{3})i}{1-i}\)
Multiplying and dividing with 1+i

∴ The values of a, b are -√3,1.