Given:
⇒ a+ ib = \(\frac{(2+i)^3}{2+3i}\)
⇒ a+ ib = \(\frac{2^3+i^3+3(2)^2(i)+3(i)^2(2)}{2+3i}\)
⇒ a+ ib = \(\frac{8+(i^2.i)+3(4)(i)+6i^2}{2+3i}\)
We know that i2=-1
⇒ a+ ib = \(\frac{8+(-1)i+12i+6(-1)}{2+3i}\)
⇒ a+ ib =\(\frac{2+11i}{2+3i}\)
Multiplying and dividing with 2-3i
⇒ a+ ib = \(\frac{2+11i}{2+3i}\) x \(\frac{2-3i}{2-3i}\)
⇒ a+ ib = \(\frac{2(2-3i)+11i(2-3i)}{(2)^2-(3i)^2}\)
⇒ a+ ib = \(\frac{4-6i+22i-33i^2}{4-9i^2}\)
We know that i2=-1
⇒ a+ ib = \(\frac{4+16i-33(-1)}{4-9(-1)}\)
⇒ a+ ib = \(\frac{37+16i}{13}\)
∴ The values of a, b are \(\frac{37}{13}\) , \(\frac{16}{13}\).