Construction: Draw seg DE ⊥ seg AB, A – E – B
and seg CF ⊥ seg AB, A – F- B.
In ∆ ACB, ∠ACB = 90° [Given]
∴ AB2 = AC2 + BC2 [Pythagoras theorem]
∴ 252 = AC2 + 152
∴ AC2 = 625 – 225 = 40

∴ AC = √400 [Taking square root of both sides]
= 20 units
Now, A(∆ABC) = 1/2 × BC × AC
Also, A(∆ABC) = 1/2 × AB × CF
∴ BC × AC = AB × CF
∴ 15 × 20 = 25 × CF
∴ CF = (15 x 20)/25 = 12 units
In ∆CFB, ∠CFB 90° [Construction]
∴ BC2 = CF2 + FB2 [Pythagoras theorem]
∴ 152 = 122 + FB2
∴ FB2 = 225 – 144
∴ FB2 = 81
∴ FB = √81 [Taking square root of both sides]
= 9 units
Similarly, we can show that, AE = 9 units Now, AB = AE + EF + FB [A – E – F, E – F – B]
∴ 25 = 9 + EF + 9
∴ EF = 25 – 18 = 7 units
In ⟂CDEF,
seg EF || seg DC [Given, A – E – F, E – F – B]
seg ED || seg FC [Perpendiculars to same line are parallel]
∴ ⟂CDEF is a parallelogram.
∴ DC = EF 7 units [Opposite sides of a parallelogram]
A(⟂ABCD) = 1/2 × CF × (AB + CD)
= 1/2 × 12 × (25 + 7)
= 1/2 × 12 × 32
∴ A(⟂ABCD) = 192 sq. units