Answer: (c) =7964.44 m
Given
\(<\)BAC = 60º ⇒ \(<\)DAC = 30º.
AD = 20 cm
⇒ AE = ED = 10 cm.

In △AEF, tan 30º = \(\frac{EF}{AE}\)
⇒ \(\frac{1}{\sqrt{3}}\) = \(\frac{r_1}{10}\)
⇒ r1 = \(\frac{10}{\sqrt{3}}\) cm
In △ADC, tan 30º = \(\frac{DC}{AD}\)
⇒ \(\frac{1}{\sqrt{3}}\) = \(\frac{r_2}{10}\)
⇒ r2 = \(\frac{20}{\sqrt{3}}\) cm
∴ Volume of the frustum cut by the plane
= \(\frac{\pi h}{3}(r_1^2+r_2^2+r_1r_2)\)
= \(\frac{\pi \times 10}{3}\big(\frac{100}{3}+\frac{400}{3}+\frac{200}{3}\big) = \frac{7000\pi}{9}\) cm3
Let the length of the wire be h cm.
Given, radius of wire = \(\frac{1}{32}\) cm.
∴ Volume of wire (cylinder) =π ×\(\big(\frac{1}{32}\big)^2 \times h\)
So, \(\frac{7000\pi}{9} =\frac{\pi h}{32 \times 32}
\)
⇒ h = \(\frac{7000\times 32\times 32}{9}\) cm
= \(\frac{7000\times 32\times 32}{9 \times 100}\) m
=7964.44 m