Answer: (a) = 7:1

Let OA = h, OC = r.
Then, AF = h/2 and by the similarity of triangles AFE and AOC, FE = r/2
∴ \(\frac{Vol.\, of\, portion\, DECB}
{Vol.\, of\, cone\, ADE}
\)
= \(\frac{Vol.\, of\, cone\, ABC\, –\, Vol.\, of\, cone\, ADE}
{Vol.\, of\, cone\,
ADE
}\)
= \(\frac{\frac{1}{3} \pi r^2 h - \frac{1}{24} \pi r^2 h}{\frac{1}{24}\pi r^2 h}\) = \(\frac{\frac{7}{24}\pi r^2 h}{\frac{1}{24}\pi r^2 h}\)
= 7:1