(c) \(\frac{a^2}{6}\)
AB = BC = CA = a
∴ Height of the equilateral Δ = \(\frac{\sqrt3}{2}\times a\)
O being the centroid of the Δ ABC,

3OD = \(\frac{\sqrt3}{2}a\) ⇒ OD = \(\frac{\sqrt3}{6}a\)
Diagonal of the square = 2 × OD
= 2 x \(\frac{\sqrt3}{6}a\) = \(\frac{\sqrt3}{2}a\)
= \(\frac{1}{\sqrt3}a\)
∴ Area of the square = \(\frac12\) (diagonal)2
= \(\frac12\) x (\(\frac{1}{\sqrt3}a\))2 = \(\frac16\)a2.