Correct Answer is \(\frac{5\pi}{6}\)
Let the principle value be given by x
Now, let x = \(sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)\)
⇒ sec x = \(\frac{-2}{\sqrt{3}}\)
⇒ sec x= - sec( \(\frac{\pi}{6}\)) ( \(\because sec\left(\frac{\pi}{6}\right)=\left(\frac{2}{\sqrt{3}}\right)\)
⇒ sec x=sec( \(\pi-\frac{\pi}{6}\)) ( \(\because -sec(\theta)=sec(\pi-\theta\)))
⇒ x =\(\frac{5\pi}{6}\)