Let Δ = \(\begin{vmatrix} b+c& c+a & a+b \\[0.3em] c+a& a+b & b+c \\[0.3em] a+b &b+c &c+a \end{vmatrix}\)
Given that,
Δ = 0.
Recall that the value of a determinant remains same if we apply the operation Ri→ Ri + kRj or Ci→ Ci + kCj.
Applying R1→ R1 + R2, we get

Expanding the determinant along R1, we have
Δ = 2(a + b + c)(1)[(b – c)(c – b) – (c – a)(b – a)]
⇒ Δ = 2(a + b + c)(bc – b2 – c2 + cb – cb + ca + ab – a2)
∴ Δ = 2(a + b + c)(ab + bc + ca – a2 – b2 – c2)
We have,
Δ = 0
⇒ 2(a + b + c)(ab + bc + ca – a2 – b2 – c2) = 0
⇒ (a + b + c)(ab + bc + ca – a2 – b2 – c2) = 0
Case – I :
a + b + c = 0
Case – II :
ab + bc + ca – a2 – b2 – c2 = 0
⇒ a2 + b2 + c2 – ab – bc – ca = 0
Multiplying 2 on both sides, we have
2(a2 + b2 + c2 – ab – bc – ca) = 0
⇒ 2a2 + 2b2 + 2c2 – 2ab – 2bc – 2ca = 0
⇒ a2 – 2ab + b2 + b2 – 2bc + c2 + c2 – 2ca + a2 = 0
⇒ (a – b)2 + (b – c)2 + (c – a)2 = 0
We know,
(a – b)2 ≥ 0, (b – c)2 ≥ 0, (c – a)2 ≥ 0
If the sum of three non-negative numbers is zero, then each of the numbers is zero.
⇒ (a – b)2 = 0 = (b – c)2 = (c – a)2
⇒ a – b = 0 = b – c = c – a
⇒ a = b = c
Thus,
If \(\begin{vmatrix} b+c& c+a & a+b \\[0.3em] c+a& a+b & b+c \\[0.3em] a+b &b+c &c+a \end{vmatrix}\) = 0, then either a + b + c = 0
or a = b = c.