Note: Since all the options involve the trigonometric ratios cosec θ and cot θ, so we divide the whole term (numerator as well as denominator) by sin θ.
To find: \(\sqrt{\frac{1+cosθ}{1-cosθ}}\)
Consider \(\sqrt{\frac{1+cosθ}{1-cosθ}}\)
Dividing numerator and denominator by sin θ, we get

Rationalizing the term by multiplying it by \(\sqrt{ cosecθ + cotθ}\)

\(\sqrt{\frac{(cosecθ+cotθ)^2}{cosec^2θ-cot^2θ}}\)
Now, as 1 + cot2θ = cosec2θ
⇒ cosec2θ – cot2θ = 1
\(\sqrt{\frac{1+cosθ}{1-cosθ}}\) = \(\sqrt{\frac{(cosecθ+cotθ)^2}{cosec^2θ-cot^2θ}}\)
= \(\sqrt{(cosec θ + cot θ)^2}\)
= cosec θ + cot θ