To find: \(\frac{sinθ}{1+cosθ}\)
Consider \(\frac{sinθ}{1+cosθ}\)
Rationalizing the above fraction by (1 – cos θ),
\(\frac{sinθ}{1+cosθ}\) = \(\frac{sinθ}{1+cosθ}\times \frac{1-cosθ}{1-cosθ}\)
= \(\frac{sinθ(1-cosθ)}{(1+cosθ)(1-cosθ)}\)
= \(\frac{sinθ(1-cosθ)}{(1-cos^2θ)} \) [∵ (a – b) (a + b) = a2 – b2]
∵ sin2θ + cos2θ = 1
⇒ sin2θ = 1 – cos2θ
