To find: cos4A – sin4A
Consider cos4A – sin4A = (cos2A)2 – (sin2A)2
∵ a2 – b2 = (a – b) (a + b)
∴ cos4A – sin4A = (cos2A)2 – (sin2 A)2
= (cos2A – sin2A) (cos2A + sin2A)
= (cos2A – sin2A) [∵ cos2A + sin2A = 1]
= cos2A –(1 – cos2A) [∵ sin2A = 1 – cos2A]
= cos2A – 1 + cos2A = 2 cos2A – 1