Option : (2). b2,c2,a2 are in A.P.
sinA/sinB = sin(A-C)/sin(C-B)
As A,B,C are angles of triangle
A + B + C = π
A = π – (B + C)
So,
sinA = sin(B + C) …(1)
Similarly,
sinB = sin(A + C) …(2)
From (1) and (2),
\(\frac{sin(B+C)}{sin(A+C)}\) = \(\frac{sin(A-C)}{sin(C-B)}\)
sin(C + B). sin(C – B) = sin(A – C) sin(A + C)
sin2C-sin2B = sin2A-sin2C
{∵sin(x+y)sin(x-y) = sin2x-sin2y}
2sin2C = sin2A + sin2B
By sine rule,
2c2 = a2+b2
⇒ b2,c2 and a2 are in A.P.