Correct Answer - Option 2 : 4
Calculation :
Given, ax = 1/8, x = 3/2[(log2 a) - 3]
⇒ a3/2[(log2 a) - 3] = 1/8
Applying log to base 2 in both sides, we get,
3/2[(log2 a) - 3] log2 a = log2 (1/8)
⇒ 3/2[(log2 a) - 3] log2 a = -3
Let log2 a = x
⇒ (x - 3) x = -2
⇒ x2 -3x + 2 = 0
⇒ (x - 1)(x - 2) = 0
⇒ x = 1 or 2
⇒ log2 a = 1 or log2 a = 2
⇒ a = 2 or a = 4
As given 'a' is a perfect square ⇒ a = 4
Whenever there is a quadratic equation in logarithm, always check whether the final answer satisfies the given condition in the question and logarithmic properties.