Correct Answer - Option 3 :
\(\frac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\)
Concept:
Laplace transform of f(t):
L {f(t)} = F (s)
Then, Multiplication by tn:
L {tn f(t)} = (-1)n\(\frac{{{d^n}}}{{d{s^n}}}\) [ F(s)]
Now,
L (cos at) = \(\frac{{\rm{s}}}{{{{\rm{s}}^2} + {{\rm{a}}^2}}}\)
L {t cos at} = (-1) \(\frac{{\rm{d}}}{{{\rm{ds}}}}\left( {\frac{{\rm{s}}}{{{{\rm{s}}^2} + {{\rm{a}}^2}}}} \right)\)
= \(\frac{{{\rm{s\;}}\left( {2{\rm{s}}} \right) - \left( 1 \right)\left( {{{\rm{s}}^2} + {{\rm{a}}^2}} \right)}}{{{{\left( {{{\rm{s}}^2} + {{\rm{a}}^2}} \right)}^2}}}\)
=
\(\frac{{{{\rm{s}}^2} - {{\rm{a}}^2}}}{{{{\left( {{{\rm{s}}^2} + {{\rm{a}}^2}} \right)}^2}}}\)