Correct Answer - Option 4 : 90°
Given curve
x2 = 4y ……(i)
y2 = 4x ……(ii)
\(2x = 4\frac{{dy}}{{dx}}\)
At point (0,0)
\({\left( {\frac{{dy}}{{dx}}} \right)_{\left( {0,0} \right)}} = \infty = {m_2}\)
Let \({m_2} = \frac{1}{{m'}}\)
where m’ = 0
\(\tan \theta = \left| {\frac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right| = \left| {\frac{{{m_1}m' - 1}}{{m' + {m_1}}}} \right| = \left| {\frac{{0 - 1}}{{0 + 0}}} \right|\)
\(\Rightarrow \theta = \frac{\pi }{2} = 90^\circ \;\)