Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
106 views
in Determinants by (240k points)
closed by
Find the determinant of the matrix \(\begin{vmatrix} \rm x-y & \rm y-z & \rm z-x\\ \rm y-z & \rm z-x & \rm x-y \\ \rm z-x & \rm x-y & \rm y-z \end{vmatrix}\)
1. x + y + z
2. x2 + y2 + z2
3. 0
4. (x + y + z)2 - xyz

1 Answer

0 votes
by (239k points)
selected by
 
Best answer
Correct Answer - Option 3 : 0

Concept:

Properties of Determinant of a Matrix:

  • If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.
  • For any square matrix say A, |A| = |AT|.
  • If we interchange any two rows (columns) of a matrix, the determinant is multiplied by -1.
  • If any two rows (columns) of a matrix are same then the value of the determinant is zero.

 

Calculation:

\(\begin{vmatrix} \rm x-y & \rm y-z & \rm z-x\\ \rm y-z & \rm z-x & \rm x-y \\ \rm z-x & \rm x-y & \rm y-z \end{vmatrix}\)

Apply R1 → R1 + R2 + R3, We get

\(\begin{vmatrix} \rm 0 & \rm 0 & \rm 0\\ \rm y-z & \rm z-x & \rm x-y \\ \rm z-x & \rm x-y & \rm y-z \end{vmatrix}\)

As we can see that the entry of the first row is zero. 

We know that,

If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.

∴ \(\begin{vmatrix} \rm x-y & \rm y-z & \rm z-x\\ \rm y-z & \rm z-x & \rm x-y \\ \rm z-x & \rm x-y & \rm y-z \end{vmatrix}\) = 0

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...