Correct Answer - Option 3 : 0
Concept:
Properties of Determinant of a Matrix:
- If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.
- For any square matrix say A, |A| = |AT|.
- If we interchange any two rows (columns) of a matrix, the determinant is multiplied by -1.
- If any two rows (columns) of a matrix are same then the value of the determinant is zero.
Calculation:
\(\begin{vmatrix} \rm x-y & \rm y-z & \rm z-x\\ \rm y-z & \rm z-x & \rm x-y \\ \rm z-x & \rm x-y & \rm y-z \end{vmatrix}\)
Apply R1 → R1 + R2 + R3, We get
= \(\begin{vmatrix} \rm 0 & \rm 0 & \rm 0\\ \rm y-z & \rm z-x & \rm x-y \\ \rm z-x & \rm x-y & \rm y-z \end{vmatrix}\)
As we can see that the entry of the first row is zero.
We know that,
If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.
∴ \(\begin{vmatrix} \rm x-y & \rm y-z & \rm z-x\\ \rm y-z & \rm z-x & \rm x-y \\ \rm z-x & \rm x-y & \rm y-z \end{vmatrix}\) = 0