Correct Answer - Option 4 : -3ω
2
Concept:
ω is a cube root of unity.
Property of cube root of unity:
Calculations:
Given, ω is a cube root of unity.
⇒ω3 = 1, ad 1 + ω + ω2 = 0
Now, consider the determinant
\(\rm \begin{vmatrix} 1 + ω & ω^2 & -ω \\\ 1 + ω^2 & ω & -ω^2 \\\ ω^2 + ω & ω & -ω^2 \end{vmatrix}\)
Taking ω and -ω common from C2 and C3 respectively,
= \(\rm-ω^2 \begin{vmatrix} 1 + ω & ω & 1\\\ 1 + ω^2 &1 & ω \\\ ω^2 + ω & 1& ω \end{vmatrix}\)
= \(\rm -ω^2 [(1+ω)(ω-ω)-ω(ω +1-1-ω^2)+(1+ω^2-ω^2-ω)]\)
= \(\rm -ω^2 [-ω^2+1+1-ω]\)
= \(\rm ω -2ω^2+ 1\)
= \(\rm 1+ ω + ω^2-3ω^2\)
= 0 - 3ω2
= - 3ω2
Hence the required value is -3ω2