Correct Answer - Option 4 : 0
Concept:
Properties of Determinant of a Matrix:
- If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.
- For any square matrix say A, |A| = |AT|.
- If we interchange any two rows (columns) of a matrix, the determinant is multiplied by -1.
- If any two rows (columns) of a matrix are same then the value of the determinant is zero.
Calculation:
\(\begin{vmatrix} \rm z & \rm x & \rm y\\ \rm 1 & \rm 1 & \rm 1 \\ \rm x + y & \rm y+z & \rm z+x \end{vmatrix}\)
Apply R1 → R1 + R3
= \(\begin{vmatrix} \rm x+y+z & \rm x+y+z & \rm x+y+z\\ \rm 1 & \rm 1 & \rm 1 \\ \rm x + y & \rm y+z & \rm z+x \end{vmatrix}\)
Taking common (x + y + z) from Row 1, we get
= \((\rm x+y+z)\begin{vmatrix} 1 & 1 & 1\\ \rm 1 & \rm 1 & \rm 1 \\ \rm x + y & \rm y+z & \rm z+x \end{vmatrix}\)
As we can see that the first and the second row of the given matrix are equal.
We know that, if any two rows (columns) of a matrix are same then the value of the determinant is zero.
∴\(\begin{vmatrix} \rm z & \rm x & \rm y\\ \rm 1 & \rm 1 & \rm 1 \\ \rm x + y & \rm y+z & \rm z+x \end{vmatrix}\) = 0