Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
98 views
in Determinants by (240k points)
closed by
Find the determinant of the matrix \(\begin{vmatrix} \rm z & \rm x & \rm y\\ \rm 1 & \rm 1 & \rm 1 \\ \rm x + y & \rm y+z & \rm z+x \end{vmatrix}\)
1. xyz
2. x + y + z
3. xy + yz + zx
4. 0

1 Answer

0 votes
by (239k points)
selected by
 
Best answer
Correct Answer - Option 4 : 0

Concept:

Properties of Determinant of a Matrix:

  • If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.
  • For any square matrix say A, |A| = |AT|.
  • If we interchange any two rows (columns) of a matrix, the determinant is multiplied by -1.
  • If any two rows (columns) of a matrix are same then the value of the determinant is zero.

 

Calculation:

\(\begin{vmatrix} \rm z & \rm x & \rm y\\ \rm 1 & \rm 1 & \rm 1 \\ \rm x + y & \rm y+z & \rm z+x \end{vmatrix}\)

Apply R1 → R1 + R3

\(\begin{vmatrix} \rm x+y+z & \rm x+y+z & \rm x+y+z\\ \rm 1 & \rm 1 & \rm 1 \\ \rm x + y & \rm y+z & \rm z+x \end{vmatrix}\)

Taking common (x + y + z) from Row 1, we get

\((\rm x+y+z)\begin{vmatrix} 1 & 1 & 1\\ \rm 1 & \rm 1 & \rm 1 \\ \rm x + y & \rm y+z & \rm z+x \end{vmatrix}\)

As we can see that the first and the second row of the given matrix are equal. 

We know that, if any two rows (columns) of a matrix are same then the value of the determinant is zero.

\(\begin{vmatrix} \rm z & \rm x & \rm y\\ \rm 1 & \rm 1 & \rm 1 \\ \rm x + y & \rm y+z & \rm z+x \end{vmatrix}\) = 0

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

...