30. Prove that cos2 2x – cos2 6x = sin 4x sin 8x
Answer:
It is known that

∴ L.H.S. = cos2 2x – cos2 6x
= (cos 2x + cos 6x) (cos 2x – 6x)

= [2 cos 4x cos 2x] [–2 sin 4x (–sin 2x)]
= (2 sin 4x cos 4x) (2 sin 2x cos 2x)
= sin 8x sin 4x = R.H.S.
31. Prove that sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x
Answer:
L.H.S. = sin 2x + 2 sin 4x + sin 6x
= [sin 2x + sin 6x] + 2 sin 4x

= 2 sin 4x cos (– 2x) + 2 sin 4x
= 2 sin 4x cos 2x + 2 sin 4x
= 2 sin 4x (cos 2x + 1)
= 2 sin 4x (2 cos2 x – 1 + 1)
= 2 sin 4x (2 cos2 x)
= 4cos2 x sin
4x = R.H.S.
32. Prove that cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
Answer:
L.H.S = cot 4x (sin 5x + sin 3x)

= 2 cos 4x cos x
R.H.S. = cot x (sin 5x – sin 3x)

= 2 cos 4x. cos x
L.H.S. = R.H.S.
33. Prove that \(\cfrac{cos9x - cos5x}{sin17x-sin3x}=-\cfrac{sin2x}{cos10x}\)
Answer:
It is known that

∴ L.H.S = \(\cfrac{cos9x - cos5x}{sin17x-sin3x}\)

34. Prove that :
\(\cfrac{sin\,5x + sin\,3x}{cos\,5x + cos\,3x} = tan \,4x\)
Answer:
It is known that

∴L.H.S. = \(\cfrac{sin\,5x + sin\,3x}{cos\,5x + cos\,3x} \)

35. Prove that \(\cfrac{sin\,x-sin\,y}{cos\,x+cos\,y}=tan\frac{x-y}{2}\)
Answer:
It is known that

∴ L.H.S. = \(\cfrac{sin\,x-sin\,y}{cos\,x+cos\,y}\)

36. Prove that \(\cfrac{sin\,x+sin\,3x}{cos\,x+cos\,3x}=tan2x \)
Answer:
It is known that

∴ L.H.S. = \(\cfrac{sin\,x+sin\,3x}{cos\,x+cos\,3x}\)

37. Prove that \(\cfrac{sin\,x-sin\,3x}{sin^2x- cos^2x}= 2sin\,x\)
Answer:
It is known that


38. Prove that
\(\cfrac{cos\,4x+cos\,3x+cos\,2x}{sin\,4x+sin\,3x+sin\,2x}= cot\,3x\)
Answer:
L.H.S. = \(\cfrac{cos\,4x+cos\,3x+cos\,2x}{sin\,4x+sin\,3x+sin\,2x}\)



39. Prove that cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
Answer:
L.H.S. = cot x cot 2x – cot 2x cot 3x – cot 3x cot x
= cot x cot 2x – cot 3x (cot 2x + cot x)
= cot x cot 2x – cot (2x + x) (cot 2x + cot x)

= cot x cot 2x – (cot 2x cot x – 1) = 1 = R.H.S.
40. Prove that \(tan\,4x=\cfrac{4\,tan\,x(1-tan^2x)}{1-6\,tan^2x+tan^4x}\)
Answer:
It is known that.
\(tan\,2A = \frac{2\,tan\,A}{1-tan^2\,A}\)
∴ L.H.S. = tan 4x = tan 2(2x)

41. Prove that: cos 4x = 1 – 8sin2x cos2x
Answer:
L.H.S. = cos 4x
= cos 2(2x)
= 1 – 2 sin2 2x [cos 2A = 1 – 2 sin2 A]
= 1 – 2(2 sin x cos x)2 [sin2A = 2sin A cosA]
= 1 – 8 sin2x
cos2x = R.H.S
42. Prove that: cos 6x = 32 cos6 x – 48 cos4 x + 18 cos2 x – 1
Answer:
L.H.S. = cos 6x
= cos 3(2x)
= 4 cos3 2x – 3 cos 2x [cos 3A = 4 cos3 A – 3 cos A]
= 4 [(2 cos2 x – 1)3 – 3 (2 cos2 x – 1) [cos 2x = 2 cos2 x – 1]
= 4 [(2 cos2 x)3 – (1)3 – 3 (2 cos2 x)2 + 3 (2 cos2 x)] – 6cos2 x + 3
= 4 [8cos6x – 1 – 12 cos4x + 6 cos2x] – 6 cos2x + 3
= 32 cos6x – 4 – 48 cos4x + 24 cos2 x – 6 cos2x + 3
= 32 cos6x – 48 cos4x + 18
cos2x – 1 = R.H.S.
43. Find the principal and general solutions of the equation tan x = \(\sqrt{3}\)
Answer:
tan x = \(\sqrt{3}\)
It is known that tan \(\frac{\pi}{3}=\sqrt{3}\) and tan (\(\frac{4\pi}{3}\)) = tan(\(\pi+\frac{\pi}{3}\)) = \(tan\frac{\pi}{3}= \sqrt{3}\)
Therefore, the principal solutions are x = \(\frac{\pi}{3}\) and \(\frac{4\pi}{3}\).
Now, tan x = tan\(\frac{\pi}{3}\)
⇒ x = nπ + \(\frac{\pi}{3}\) , where n \(\in\) Z