P(A) = \(\frac{n(A)}{n(S)}=\frac{12000}{48000}\) = \(\frac{12}{48}=\frac14\)
P(B) = \(\frac{n(B)}{n(S)}=\frac{16000}{48000}\) = \(\frac{16}{48}=\frac13\)
P(C) = \(\frac{n(C)}{n(S)}=\frac{20000}{48000}\) = \(\frac{20}{48}=\frac1{12}\)
P(E/A) = 0.01, P(E/B) = 0.03
P(E/C) = 0.04
where E : The event of accident of vehicle.
(i) P(C) = \(\frac{n(C)}{n(S)}=\frac{20000}{48000}=\frac{20}{48}=\frac5{12}\)
(ii) P(E/A) = 0.01
(iii) P(E) = P(E/A)P(A) + P(E/B)P(B) + P(E/C) P(C)
= 0.01 x 1/4 + 0.03 x 1/3 + 0.04 x 5/12
= 1/400 + 1/100 + 5/300 = \(\frac{3+12+20}{1200}\) = \(\frac{35}{1200}\) = \(\frac{7}{240}\)
(iv)
P(C/E) = \(\frac{P(E/C)P(C)}{P(E/A)P(A)+P(E/B)P(B)+P(E/C)P(C)}\)
= \(\cfrac{0.04\times\frac5{12}}{\frac{35}{1200}}=\cfrac{\frac{20}{1200}}{\frac{35}{1200}}\) = \(\frac{20}{35}=\frac47\)